Chapter 3: Machines

♦ What is a Machine?

- A machine is a device that makes work easier by multiplying force, changing the direction of effort, or increasing speed.
- In physics, a machine receives an **input** (effort) and transfers it to an **output** (load).

♦ Types of Simple Machines

- 1. Lever
- 2. Wheel and Axle
- 3. Pulley
- 4. Inclined Plane
- 5. Wedge
- 6. Screw

♦ Functions of Machines

- 1. **Force Multiplier** Lifts heavy loads with less effort (e.g., jack, spade).
- 2. **Change Point of Application** Applies effort at a convenient position (e.g., bicycle pedal).
- 3. Change Direction of Effort Makes work easier (e.g., pulley for drawing water).
- 4. **Gain in Speed** Small effort movement causes large load movement (e.g., scissors, tongs).

♦ Key Terms

- Load (L): The object lifted/resisted (Unit: Newton)
- **Effort (E):** The force applied to do work (Unit: Newton)
- Mechanical Advantage (MA):

$$MA = \frac{Load}{Effort}$$

No unit.

• Velocity Ratio (VR):

No unit.

• Efficiency (η):

$$\eta = \frac{\textit{Work Output}}{\textit{work input}} \times 100\%$$

OR

$$\eta = \frac{MA}{VR} \times 100\%$$

♦ Types of Machines Based on MA and VR

Case	Mechanical Advantage	Use
MA > 1	Force Multiplier	e.g., jack
MA < 1	Gain in Speed	e.g., scissors
MA = 1	Change in Direction	e.g., single fixed pulley

A machine **cannot be** a force multiplier and speed multiplier at the same time.

♦ Work in Machines

- Work Input = Effort × Distance moved by effort
- Work Output = Load × Distance moved by load
- In **ideal machines**, Input = Output, so efficiency = 100%.

♦ Levers

- A lever is a rigid bar that pivots around a fixed point called a **fulcrum**.
- Works on the **principle of moments**: Load×Load Arm = Effort×Effort Arm

♦ Types of Levers

Type	Arrangement	Example	MA
Class I	Fulcrum in between	Seesaw, scissors	<, =, or > 1
Class II	Load in between	Nut cracker, wheelbarrow	Always > 1
Class III	Effort in between	Tongs, spade, fishing rod	Always < 1

♦ Levers in the Human Body

- Class I: Nodding head (spine = fulcrum)
- Class II: Standing on toes (toes = fulcrum)
- Class III: Lifting with forearm (elbow = fulcrum)

♦ Pulleys

♦ Single Fixed Pulley:

- MA = 1, $VR = 1 \rightarrow$ Changes direction only
- Efficiency < 100% due to friction

♦ Single Movable Pulley:

- MA = 2, $VR = 2 \rightarrow$ Force multiplier
- Efficiency = $\sim 100\%$ (ideal case)

♦ Pulley Systems:

- 1. One Fixed + One Movable
 - o $MA = 2^n$ (n = number of movable pulleys)
 - \circ VR = 2^n

2. Block and Tackle

- o MA = Total number of pulleys
- VR = Number of strands supporting the load

♦ Key Formulas Recap

Concept	Formula
Mechanical Advantage	$MA = \frac{L}{E}$
Velocity Ratio	$VR = \frac{dE}{dL}$
Efficiency	$\eta = \frac{MA}{VR} \times 100\%$
Principle of Lever	$L \times LA = E \times EA$

